Localized immune surveillance of primary melanoma in the skin deciphered through executable modeling

CC-BY 4.0

Abstract

While skin is a site of active immune surveillance, primary melanomas often escape detection. Here, we have developed an in silico model to determine the local cross-talk between melanomas and Langerhans cells (LCs), the primary antigen-presenting cells at the site of melanoma development. The model predicts that melanomas fail to activate LC migration to lymph nodes until tumors reach a critical size, which is determined by a positive TNF-α feedback loop within melanomas, in line with our observations of murine tumors. In silico drug screening, supported by subsequent experimental testing, shows that treatment of primary tumors with MAPK pathway inhibitors may further prevent LC migration. In addition, our in silico model predicts treatment combinations that bypass LC dysfunction. In conclusion, our combined approach of in silico and in vivo studies suggests a molecular mechanism that explains how early melanomas develop under the radar of immune surveillance by LC.

Type
Publication
Science Advances

Image credit: Adapted from Howell & Davies et al., Science Advances 2023. CC-BY 4.0

Matthew A. Clarke
Matthew A. Clarke
Research Fellow

Research Fellow at PIBBSS (Principles of Intelligent Behavior in Biological and Social Systems) working on mechanistic interpratibility of large language models with sparse autoencoders.